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Abstract—We present a theoretical and numerical description
of coupled defects in photonic-bandgap crystals, expandable to
cover a wide range of applications. Based on a weak interaction
approach, explicit expressions are derived for defect interaction.
The basis is formed by a system of coupled ordinary differential
equations for the field amplitudes for individual defects. The ac-
tual configuration of the defects (chain, lattice, bend, or anything
else) enters the equations as a linear coupling between neighboring
defects. The strength of this method is that many solutions of
this system are known analytically; the band structure as well as
the transmission response of a defect chain, or of a defect lattice,
can be determined. The results for the superlattice of defects are
compared with widely accepted numerical methods, the transfer
matrix method, and finite-difference time domain.

Index Terms—Electromagnetic crystals, periodic structures,
photonic-bandgap crystals.

I. INTRODUCTION

A N IDEAL photonic crystal (PC) is constructed by the in-
finite repetition of identical structural units in space. With

correct design, this affords us control over the emission and
propagation of electromagnetic waves through resultant gaps in
the dispersion relation, the photonic bandgaps (PBG). Consider-
able effort in theoretical, experimental and material fabrication
research has predicted and demonstrated many of the properties
of these ideal crystals. By placing a “defect unit” within an oth-
erwise perfect PC a localized resonance peak in transmission
may be created within the forbidden bandgap of the structure.
Introducing further defects into the crystal and placing them
within coupling distance opens up a miniband of allowed trans-
mission [1], [2].

Chains of defects form a mechanism for waveguiding, com-
monly referred to as coupled-cavity waveguides (CCW), and
can be used to make wavelength selective efficient waveguides,
bends and splitters [3]–[7]. The spectral properties of such
waveguides are determined by the nature of the defects and
their spacing; both broad-band and narrow-band waveguides
can be created. While defects within planar PCs may also be
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used to increase light emission [8], this paper examines the
effects of proximity between defects on waveguiding.

For the hexagonal lattice studied, two incidence directions
were studied and the width and miniband localization frequency
are investigated as a function of coupling distance between de-
fects within the lattice. Crosstalk minimization or defect isola-
tion is achieved at a much faster rate than was at first expected.
The CCW system is created by introducing a similar geometry
superlattice of defects into a fundamental hexagonal lattice of
air holes in dielectric. Defects can be introduced by altering the
size of one or more of the constituent features of the lattice,
in our case by completely in-filling the air holes at superlattice
sites.

Previous work has examined defects within PCs forming ef-
ficient bends and waveguides [9]–[11]. Tayeb examined the in-
fluence of more than one localized defect as a function of dis-
tance [12]. We distinguish our coupled-cavity analysis from that
of the continuous dielectric PC waveguides as rigorously exam-
ined, for example by Sondergaard and Dridi [13] and Yonekura
et al. [14].

II. L ATTICE DEFINITIONS

The fundamental lattice consists a hexagonal array of air
holes introduced into a dispersionless bulk refractive index
material , figures representative
of the effective index of a GaAs waveguide that is thick
and that has oxidized AlGaAs on one side and air on the other.
The air cylinders were chosen to have a ratio of radius,, to
lattice constant, , of . Analysis of the perfect
lattice confirmed a gap region for TE polarized waves between
normalized frequencies of approximately –0.37
for incidence, and 0.27–0.41 for , see Fig. 1 for
incidence orientations. In this range, TM polarized waves do
not display PBG behavior.

III. COUPLED–MODE THEORY FOR

COUPLED–DEFECTSYSTEMS

In this section a coupled-mode theory is developed and the
results based on this approximation are compared with the re-
sponse of the coupled-defect lattice determined with the transfer
matrix method. This approach provides as with a deeper insight
into the energy transfer dynamics of coupled-defect systems.

A. The Model

In case of weak interaction the modal field structure of in-
dividual defects remains unchanged, only the respective field
amplitudes evolve in time. Provided that the individual defects
are similar and single mode, the dynamics of the coupled-defect
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Fig. 1. Interaction and notation for the superlattice of coupled defects.�M=
�K-directions [full line with arrow: nearest neighbor interaction (coefficient
c ), dashed line with arrow: next nearest neighbor interaction (coefficientc )].
Note that for the�K-direction them andn labels should be switched for
consistency with the text.

system are described by a set of ordinary differential equations,
given generally by [1] (see the Appendix):

(1)

where the sum is the energy transfer between thedefect
modes, is the eigenfrequency of the defect, andis the
decay rate of the effect. In this section, a perfect crystal is
assumed, i.e., dielectric losses are assumed to be negligible.
Hence, all damping is solely due to power transfer to the
environment of the crystal. Obviously, is different from zero
for defects close to the side facet of the crystal as it is for the
driving field at the defect that couples to the outermost
defects via . Conservation of energy determines the relations
between the coupling to external fields and radiative losses [2]
(see the Appendix). Therefore, the transmitted field is always
proportional to the amplitudes of the defect amplitudes closest
to the output facet. The overall dynamical response of the defect
system is determined by the coupling coefficients. They
are given by the mutual overlap between the field structures of
the defect modes and and the changes of the dielectric
constant , which has induced the defects

(2)

There are more elegant ways to determine the values of
the coupling coefficients, however, general principles can be
learned from (2). The fields involved are related to nonprop-
agating modes that possess evanescent tails. As the distance
between the defects increases, the coupling efficiency rapidly
decays to zero because the overlap between the evanescent tails
of the interacting fields decays exponentially. Normally only
the interaction between neighboring defects has to be taken into

account and if the defect lattice has certain symmetries, most of
the coefficients are equal. For our hexagonal lattices a single
coefficient, , determines the nearest neighbor interaction,
see Fig. 1. The distance to the six next nearest neighbors
(coefficient ) is already times bigger, decreasing the
relation between and due to the decaying field overlaps.
Hence, if the defect spacing is increased further, the interaction
will be very weak and it is valid to restrict analysis to nearest
neighbor interaction, setting to zero. Only in case of strong
interaction, i.e., for a rather short spacing between the defects,
should next nearest neighbor interaction be taken into account.
For our hexagonal superlattice of defects, nearest neighbor in-
teraction is by far the most dominant, but next nearest neighbor
interaction still has some effect.

To describe the response of the hexagonal defect lattice using
plane-wave excitation, a convenient notation is adopted whose
structure depends on the direction of excitation.

B. Field Propagation Into the -Direction

Coupled-mode equations are derived for nearest neighbor
interaction, the inclusion of next nearest neighbor interaction
( ) is straightforward and respective results are also
presented. By assuming that only the outermost rows
of defects interact with external fields. Hence, any damping
or excitation from outside for all defects is ne-
glected. Using the notation from Fig. 1, the following evolution
equations for the defect amplitudes is obtained:

(3a)

(3b)

(3c)

The field in the first line is driven by a harmonic excitation

(4a)

which induces the same harmonic dependence in the whole lat-
tice as

(4b)

where is the frequency of the wave andis related to its tilt
angle , the defect spacing and the index of the host material

by

(5)
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Since only the outermost defect rows couple to outer space the
transmitted field is strictly proportional to the mode amplitude
of the last defects (number )

Because only a single defect row is assumed to interact with
outer space it is possible to derive some explicit relations be-
tween the damping constants and the coupling to external radi-
ation as [15]

(6a)

(6b)

where is the lateral defect density. Substitution of (4a) and
(4b) into (3a)–(3c) reduces the two-dimensional (2-D) defect
lattice into an effective defect chain, which is described by a
system of algebraic equations like

(7a)

(7b)

(7c)

where is the frequency shift between the defect
and the incident wave. The whole system of equations (7a)–(7c)
is symmetric with respect to the transformation

(8)

With this assumption the frequency response is expected to
be symmetric with respect to the defect frequencyshifted
by . Solutions of the system (7a)–(7c) consist of
harmonic waves travelling along the effective chain like

(9)

where and are given by the two solutions of the disper-
sion relation, which also defines the band structure of the defect
lattice:

(10)

The amplitudes of the forward and backward propagating
waves and , respectively, can be determined by substi-
tuting (9) and (10) into (7a) and (7c). The transmitted field is
then given by

Fig. 2. Transmission of a hexagonal defect lattice along the�M -direction.
Approximated by a coupled-mode theory (parameters: polarization TE, 1 defect
in 3 unit cells,N = 8, c = 0:001, 
 = 
 = 0:0004, 
 = 
 = 0,
�̂ = c =

p
2
 , �̂ = c = 0, ! = 0:3103). (a) Nearest neighbor

interaction only(c = 0). (b) Nearest and next nearest neighbor interaction
(c = c =3).

Therefore the transmission of the whole structure looks like

(11)

where and
. A few interesting things

can be learned from (11). First, a limited band of transmission
is defined consisting of a series of peaks, all approaching 1 for
the case of a symmetric structure [see Fig. 2(a)]. The width
of the individual peaks is different, large in the middle of the
miniband and small at the edges, confirming that the photon
lifetime depends on the excitation frequency. In the middle of
the miniband photons travel with maximum speed and leave the
structure quickly, where at the edges of the miniband the group
velocity approaches zero, a fact confirmed experimentally [5].

The transmission relation (11) is symmetric due to relation
(8). By taking into account the next nearest neighbor interaction,
coefficient , the asymmetric terms of the spectral response are
generated. By following a similar procedure to that above, an-
alytical expressions can be obtained, but the final expressions,
which include the solution of a fourth order polynomial to deter-
mine in an expression similar to (11), are much to involved to
be reproduced. Fig. 2(b) shows the resultant transmission plot,
modeling a 1 in 3 defect lattice. The corresponding values to
reproduce these figures are in normalized units: ,

, and . Although the defect
spacing is rather large the next nearest neighbor interaction is
present and adds important new features, mainly an asymmetric
response.
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C. Field Propagation into the -Direction

Interchanging for in Fig. 1 and making the same ap-
proximations as for the -direction, the respective evolution
equations for field propagation into direction are

(12a)

(12b)

(12c)

(12d)

(12e)

Assuming incidence in the form of (4a) and (4b) reduces
(12a)–(12e) to a set of algebraic equations

(13a)

(13b)

(13c)

(13d)

(13e)

Although only nearest neighbor interaction has been included
in (12a)–(12e) the set of equations (13a)–(13e) describing the ef-
fective defect chain already includes terms that spread further.
The immediate consequence is the loss of the symmetry as de-
scribed by (8). Hence, even if next nearest neighbor interaction
can be neglected due to large defect spacing an asymmetrical

Fig. 3. Transmission of a hexagonal defect lattice along the�K-direction.
Approximated by a coupled-mode theory (parameters: polarization TE,
1 defect in 3 unit cells,N = 8, c = 0:001, 
 = 
 = 0:0008,
�̂ = c = 
 =2, ! = 0:3103). (a) Nearest neighbor interaction
only (c = 0, 
 = 
 = 0, �̂ = c = 0). (b) Nearest and
next nearest neighbor interaction (c = c =3, 
 = 
 = 0:0004,
�̂ = c = 
 =2 exp(�i�=2)).

frequency response of the lattice illuminated from the-di-
rection will be found. Fig. 3 shows two plots of the transmis-
sion in -direction, which are obtained by solving the system
of equations (13a)–(13e) and a respective set of equations with
next nearest neighbor interaction included, the response is asym-
metric. However, the inclusion of next nearest neighbor interac-
tion changes the symmetry, compare Fig. 3(a) and (b). In con-
trast to the -direction, for the -direction it was also nec-
essary to include the free space radiation with the second line of
defects. This can be understood by looking at Fig. 1. In case of
the -direction the second line of defects is much closer to a
respective interface facet than in case of the-direction.

IV. TRANSFERMATRIX METHOD ANALYSIS

A modified version of the transfer matrix method as described
by Pendry, Bell, and Ward [17]–[22] has been utilized to pro-
vide a comparison with the analytical results presented in the
previous sections [23]. The conventional cell of the superlattice,
assumed in Figs. 4–6, was represented using a 2-D orthogonal
Cartesian discretization mesh. A cell is defined as the smallest
building block that self-repeats to generate the crystal.

A. Defects: One in Every Three, and

Fig. 4 shows the miniband TE polarized transmission response
for the and propagation directions as an evolution of
the number of conventional superlattice cells. Incidence in either
lattice direction shows a central miniband normalized frequency
of , a figure in good agreement with the analytical
resultspresented inFigs.2and3.CompareFig.2(b)withFig.5 to
contrast the analytical and TMM methods. The trend toward this
localization frequency is even present for propagation through
a single cell. Increasing the number of cells does not alter the
localization frequency; see Fig. 4.
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Fig. 4. Periodic Defects: one in every three,�M and�K. The transmission
response of a TE polarized wave as a function of normalized frequency and
crystal thickness expressed in terms of the number of cells through which the
wave has been propagated. Defects have been introduced periodically along the
high symmetry axis of the crystals one in every three lattice spacings. (top):�M

response. (bottom):�K response.

Fig. 5. Closer look at 1 in 3 defects in the�M lattice direction. The TE
polarized wave transmission response for a superlattice of defects introduced
into the lattice by in-filling every third lattice site in the high symmetry
directions of the lattice.

B. Superlattice Evolution

The TE transmission response as a function of the superlat-
tice period, expressed as defect neighbor to neighbor distance,
is shown in Fig. 6 for transmission through two cells of struc-
ture. The plots clearly show convergence of the defect transmis-
sion resonance frequency as the distance between the defects
increases.

The large difference in the width of the miniband for in-
cidence between the “one in two” and “one in three” defect su-

Fig. 6. Evolution for superlattice spacing. The TE polarized wave response
against normalized frequency as a function of the neighbor to neighbor defect
superlattice spacing for propagation through two cells of structure. (top):�M

response. (bottom):�K response.

Fig. 7. Field modulus and dielectric distribution. The field modulus shown for
the “one in two” and “one in three” superlattices introduced into an otherwise
perfect hexagonal crystal as outlined in the caption of Fig. 2. The dielectric
profile is also shown so that the position of the defects can be easily ascertained.

perlattices is noteworthy. The miniband formed by the “one
in two” defect lattice is considerably larger than that of the “one
in three,” or to the same defect superlattice for transmission in
the crystal direction. This means that the defects are cou-
pling strongly to each other. Increasing the distance between de-
fect sites to “one in three” decreases the coupling and the width of
the miniband is substantially decreased. This is a finding verified
by finite difference time domain calculations, shown in Fig. 7,
which show the modulus of the electric field for a normalized fre-
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quency of and for the “one in
two” and “one in three” superlattices respectively. The difference
in field localization can be clearly seen between the two cases
with stronger coupling in the “one in two” superlattice example.

Both lattice directions show convergence toward a defect res-
onance frequency of as the distance between de-
fects is increased. The quality factor of the defect state is also im-
proved by increasing the distance between defects resulting in an
increased reflectivity between defect sites. This means that for
certain applications the quality factorQ of the system can be en-
gineered to match either the wantedQ, or to increase the coupling
efficiency between the PC chip and other emitting components.

V. CONCLUSION

In summary, we have presented both theoretical and numer-
ical descriptions of coupled defects in PBG crystals. Based on
a weak interaction approach, explicit expressions have been de-
rived for the interaction between defects and the influence of
perturbations. The actual configuration of the defects, chain, lat-
tice, etc. enters the equations as a linear coupling between neigh-
boring defects. The results have been compared favorably with
widely accepted numerical methods, the transfer matrix method,
and finite difference time domain method to compare the elec-
tromagnetic properties of the structures.

Future devices may benefit greatly from using coupled de-
fects to guide electromagnetic radiation. Bends in coupled-de-
fect chains can be introduced along the crystal’s inherent sym-
metry axis with no insertion loss, i.e., mode mismatch due to
bends in straight wave guiding does not occur. TheQ-factor of
the defect state can be tuned to suit the intended application as
can the localization frequency by altering the type of defect in-
troduced into the lattice. It is noteworthy that the defects intro-
duced into a lattice need not necessarily be a superlattice them-
selves, nor involve the complete filling of lattice sites. Chains
of defects in a straight line with a periodic pattern will suffice
to guide a signal through a PC chip.

APPENDIX

DERIVATION OF COUPLED–MODE EQUATIONS FORDEFECTS

IN A PERFECTPC

This Appendix derives the equations that describe the evolu-
tion of fields attached to defects in a PC. The analysis is general
and assumes a three-dimensional (3-D) PC, but can easily be ap-
plied to 2-D, or one-dimensional (1-D) crystals. This only affects
the dimension of the space where the integrations are performed.

It is assumed that both the electric and magnetic field struc-
tures and , and the eigenfrequency , of the eigenmode
of a single defect in an otherwise perfect crystal are known. The
influence of other defects is considered as a weak perturbation.
Therefore, the field structure of the defect does not change and
only the respective amplitude evolves in time. Hence, the
electric and magnetic fields attached to the de-
fect are approximated as

and

(A1a)

For convenience we have scaled the amplitudein that way
that its squared absolute value corresponds to the actual mode
energy. provides the respective reference to the energy of
the field structures used in (A1a) as

where is the relative dielectric constant, constituting the
PC lattice and the defect that is non dispersive in the frequency
domain under consideration. We define the unperturbed fields

and , which represent the true defect
mode in the absence of any perturbation as

and

(A1b)

We compare these to the real field structures at the defect
and evaluate the following expression by applying Maxwell’s
equations and inserting (A1a) and (A1b)

(A2)

Any perturbation due to the action of neighboring defects is
incorporated into an additional polarization field . Next,
we integrate (A2) over the whole space. As nonpropagating
modes decay exponentially in space the left-hand side of (A2)
vanishes to give

(A3)

Next, the magnetic energy of the unperturbed defect mode is
transformed, which appears in the first term on the right-hand
side of (A3)

(A4)
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and find that it is equal to the respective electrical energy. Con-
sequently (A3) can be transformed into an evolution equation of
the amplitude of the defect mode as

(A5)

where the polarization appears as the driving term scaled with
the mode energy. We have already labeled the amplitude and the
polarization with an index to demonstrate that similar expres-
sions hold for all other defects .

Now we formulate an explicit expression for the polarization
, which acts on defect. This includes the influence of

all of the inhomogeneities of the PC lattice, the action of which
is not incorporated into the field structures defined in (A1a) and
(A1b). Hence, all the fields of neighboring defects and the re-
spective changes of the relative dielectric constants contribute
as

(A6)
Before inserting (A6) into (A5), we deal with the time deriva-

tive in front of the polarization in (A5). Inspecting (A6), we find
that the time evolution of the polarization is entirely determined
by that of the field amplitudes oscillating at almost the carrier
frequency of the defects . As long as the power transfer be-
tween the defects is slow compared with this fast oscillation the
time derivative in (A5) can be replaced by . The final ex-
pression now reads as

(A7)

The coupling coefficients are given by

for

and

(A8)

Note that (A7) accounts for both the interaction of the defects
represented by and for the shift of the eigenfrequency
introduced by neighboring defects . Because the electrical
components of the field structures of the defect modes can be
chosen in such a way that they are real valued, the coupling
coefficients are also real. If the defects are well separated and the
field distributions attached to the defects decay exponentially in

space, small terms in (A8) can be neglected. Particularly, the
energy exchange terms can be simplified as

for

In most cases, the eigenfrequency shift is the same for all
defects and can be added to. However, if small dielectric
losses are present, their influence can be incorporated into the
polarization . Following (A8), one obtains a small imaginary
contribution to the eigenfrequency, which introduces a damping.

Real PC systems are finite; therefore, boundaries play an im-
portant role. The fields attached to the defect transform from
bound states, which decay exponentially into every space direc-
tion to leaky modes, which have oscillating tails outside the PC
and contribute to either the transmitted or reflected field. Con-
sequently, the eigenfrequency of these leaky defect modes con-
tains a small imaginary part , which accounts for the decay
of the mode amplitude due to radiative losses. The same defect
mode can be excited by external radiation allowing for an inter-
action of the coupled-defect system with its environment. We
add these two terms intuitively to the evolution equation (A7)
to describe damping and external excitation of defect modes as

(A9)

where the field is the amplitude of the incident field at the
defect position, which couples to the defect mode via. Pro-
vided that the background transmission of the PC structure van-
ishes the amplitude of the transmitted field is formally
expressed by

(A10)

where describes the field pattern emerging from a single
defect toward free space. In case of a regular defect lattice and
for a plane-wave excitation (10) yields the contributions to the
different diffracted orders of the transmitted field.
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