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Coupled Defects in Photonic Crystals
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Abstract—\We present a theoretical and numerical description used to increase light emission [8], this paper examines the
of coupled defects in photonic-bandgap crystals, expandable to effects of proximity between defects on waveguiding.
cover a wide range of applications. Based on a weak interaction  pqr the hexagonal lattice studied, two incidence directions

approach, explicit expressions are derived for defect interaction. . . g .
The basis is formed by a system of coupled ordinary differential WEre studied and the width and miniband localization frequency

equations for the field amplitudes for individual defects. The ac- are investigated as a function of coupling distance between de-
tual configuration of the defects (chain, lattice, bend, or anything fects within the lattice. Crosstalk minimization or defect isola-
else) enters the equations as a linear coupling between neighboringtion is achieved at a much faster rate than was at first expected.
defects. The strength of this method is that many solutions of 16 cow system is created by introducing a similar geometry
this system are known analytically; the band structure as well as . - .

the transmission response of a defect chain, or of a defect lattice, Sl_JperIattl_CG Qf defe_Cts into a fundamental hexagonal la_tt'ce of
can be determined. The results for the superlattice of defects are air holes in dielectric. Defects can be introduced by altering the

compared with widely accepted numerical methods, the transfer size of one or more of the constituent features of the Iattice,

matrix method, and finite-difference time domain. in our case by completely in-filling the air holes at superlattice
Index Terms—Electromagnetic crystals, periodic structures, Sites.
photonic-bandgap crystals. Previous work has examined defects within PCs forming ef-

ficient bends and waveguides [9]-[11]. Tayeb examined the in-
fluence of more than one localized defect as a function of dis-
tance [12]. We distinguish our coupled-cavity analysis from that
N IDEAL photonic crystal (PC) is constructed by the inof the continuous dielectric PC waveguides as rigorously exam-
finite repetition of identical structural units in space. Withned, for example by Sondergaard and Dridi [13] and Yonekura
correct design, this affords us control over the emission aegal. [14].
propagation of electromagnetic waves through resultant gaps in
the dispersion relation, the photonic bandgaps (PBG). Consider- Il. LATTICE DEFINITIONS
able effort in theoretical, experimental and material fabrication _ _ .
research has predicted and demonstrated many of the propeﬁiélr € _funddamegtal Iattm: conS|_sts| a hebxalgon?l array .Of dalr
of these ideal crystals. By placing a “defect unit” within an oth0'es Introduced into a dispersioniess bulk refractive index

- ; ; ; terialn 1 = 2.81 (g, = 7.9), figures representative
erwise perfect PC a localized resonance peak in transmlss‘gﬁ material ! ' . : :
may be created within the forbidden bandgap of the structuf? the effective index of a GaAs waveguide thatif2 thick

Introducing further defects into the crystal and placing the

d that has oxidized AlGaAs on one side and air on the other.
within coupling distance opens up a miniband of allowed tran?pe air cylinders were chosen to have a ratio of radiysp
mission [1], [2]. a

ttice constanta, of /o = 0.35. Analysis of the perfect
Chains of defects form a mechanism for waveguiding, COA%ttlce confirmed a gap region for TE polarized waves between
monly referred to as coupled-cavity waveguides (CCW), a

r??rmalized frequencies of approximately\ = 0.235-0.37
can be used to make wavelength selective efficient wavegui

phisle I'M incidence, and 0.27-0.41 fdrK, see Fig. 1 for
bends and splitters [3]-[7]. The spectral properties of su. c’idgnce orientations._ln this range, TM polarized waves do
waveguides are determined by the nature of the defects aﬂ% display PBG behavior.
their spacing; both broad-band and narrow-band waveguides
can be created. While defects within planar PCs may also be

. INTRODUCTION

I1l. CouPLED-MODE THEORY FOR
COUPLED-DEFECT SYSTEMS

In this section a coupled-mode theory is developed and the
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account and if the defect lattice has certain symmetries, most of
the coefficients:;; are equal. For our hexagonal lattices a single
coefficient, ¢y, determines the nearest neighbor interaction,
n+1 see Fig. 1. The distance to the six next nearest neighbors
(coefficient ¢;) is already+/3 times bigger, decreasing the
relation betweer; andc¢y due to the decaying field overlaps.
n-1 Hence, if the defect spacing is increased further, the interaction
will be very weak and it is valid to restrict analysis to nearest
neighbor interaction, setting to zero. Only in case of strong
interaction, i.e., for a rather short spacing between the defects,
should next nearest neighbor interaction be taken into account.
For our hexagonal superlattice of defects, nearest neighbor in-
ﬁl‘M teraction is by far the most dominant, but next nearest neighbor

interaction still has some effect.
To describe the response of the hexagonal defect lattice using

Fig. 1. Interaction and notation for the superlattice of coupled defBats/ ~ plane-wave excitation, a convenient notation is adopted whose

'K -directions [full line with arrow: nearest neighbor interaction (coefficienstrycture depends on the direction of excitation.
¢g), dashed line with arrow: next nearest neighbor interaction (coefficigt

Note that for thel' K -direction them and n labels should be switched for . . . .
consistency with the text. B. Field Propagation Into thé A7Z-Direction

Coupled-mode equations are derived for nearest neighbor

system are described by a set of ordinary differential equatiofiferaction, the inclusion of next nearest neighbor interaction
given generally by [1] (see the Appendix): (e # 0) is straightforward and respective results are also
presented. By assuming that = 0 only the outermost rows
d N of defects interact with external fields. Hence, any damping
t—a; = (wo — iy;)a; — Z Cij0j + TiGin, (1) or excitation from outside for all defects < n < N is ne-
dt , . ) : . .
i=1 glected. Using the notation from Fig. 1, the following evolution
i equations for the defect amplitudes is obtained:
where the sum is the energy transfer between theefect
modes,wy is the eigenfrequency of the defect, amdis the
decay rate of the effect. In this section, a perfect crystal pﬂ a
assumed, i.e., dielectric losses are assumed to be negligibl€?
Hence, all damping is solely due to power transfer to the — co(@1m—1 + Gimt1 + G2m + G2m—1) + T1 Ginmy
environment of the crystal. Obviously; is different from zero (3a)
for defects close to the side facet of the crystal as it is for the. ,, « -
driving field at the defect, that couples to the outermost
defects viar;. Conservation of energy determines the relations— .., = wotnm — co(Gnm—1 + Gnmt1 + Gne1m + Gngim
between the coupling to external fields and radiative losses [Z?t 3b
(see the Appendix). Therefore, the transmitted field is always Ottt + animi) (3b)
proportional to the amplitudes of the defect amplitudes closést N:
to the output facet. The overall dynamical response of the def%ad_i
system is determined by the coupling coefficients. They — dt
are given by the mutual overlap between the field structures of —co(anNm—1 + aNm41 + GN—1m + ON_1m41)-
the defect modeﬁi and Ej and the changes of the dielectric (3¢)
constantbs g, which has induced the defects

n=1

1m — (wO - iryl)a/lrn

ANm = (wo - i’YN)aNrn

The field in the first line is driven by a harmonic excitation

d37’6eRﬁjﬁj . .
6 = wo ) Ainm = bin exp(irm — iwt) (4a)
3 .12 . . . .
/d rer| £l which induces the same harmonic dependence in the whole lat-
tice as
There are more elegant ways to determine the values of
the coupling coefficients, however, general principles can be A = bp exp(inm — iwt) (4b)

learned from (2). The fields involved are related to nonprop-

agating modes that possess evanescent tails. As the distaagrew is the frequency of the wave anmdis related to its ilt
between the defects increases, the coupling efficiency rapidglec, the defect spacing and the index of the host material
decays to zero because the overlap between the evanescentitaildy

of the interacting fields decays exponentially. Normally only w

the interaction between neighboring defects has to be taken into r = sin(cr) Lny, P )
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Since only the outermost defect rows couple to outer space the 1
. . . . . . (@) ™
transmitted field is strictly proportional to the mode amplitude
of the last defects (numbé¥) 0.01
1E-4
b‘r = CTNbN~ c 1E-6
9
. . . . [723
Because only a single defect row is assumed to interact with ‘é’ 1E-8
outer space it is possible to derive some explicit relations be- 2
tween the damping constants and the coupling to external radi- l‘_E RO ™
ation as [15] w00t
1E-4
|c7'N |2 = Z,YNF (Ga)
" 1E-6
A2
=2 = 6b
7| r (6b) 1E-8
wherel is the lateral defect density. Substitution of (4a) and 03 0305 031 0315 032
(4b) into (3a)—(3c) reduces the two-dimensional (2-D) defect Normalised Frequency fa/c
lattice into an effective defect chain, which is described by a
system of algebraic equations like Fig. 2. Transmission of a hexagonal defect lattice alongIthé-direction.
Approximated by a coupled-mode theory (parameters: polarization TE, 1 defect
) in 3 unit cells,N = 8, ¢y = 0.001, v, = v~ = 0.0004, v2 = ynv_1 = 0,
n=1: 1= ¢y = V271, F2 = ¢y, = 0,wo = 0.3103). (a) Nearest neighbor
. . interaction only(¢; = 0). (b) Nearest and next nearest neighbor interaction
0 =[—bw — t71 — 2cg cos(k)]b1 — co[1 + exp(—ir)]bo (¢ = co/3). »=0)
+ 71bin (7a)
I<n<N: Therefore the transmission of the whole structure looks like

0 =[—bw — 2¢cq cos(k)]by, — o[l + exp(ir)]br_1

— coll + exp(—irs) b (7b)
n—=N: (K, bw)
B T1Cry Sin v exp(—iNp)
0 =[~éw —iyy — 2eo cos(r)lby — eo[l + eXp(m)]bN_(; ) BIN sinfa(N —1)]+i(y: +w) sin(@V) —csinfa(N +1)]
Cc

11)

wherebw = w — wy is the frequency shift between the defect . )
and the incident wave. The whole system of equations (7a)—(Y#)ere cexp(ip) = [l + exp(—ir)] and a =

is symmetric with respect to the transformation arccos((2co cos(r) — éw)/2c). A few interesting things
can be learned from (11). First, a limited band of transmission

bw = —bw —4cgcos(k) k= —r by = (—1)"b%. is defined consisting of a series of peaks, all approaching 1 for
®) the case of a symmetric structure [see Fig. 2(a)]. The width

of the individual peaks is different, large in the middle of the

With this assumption the frequency response is expectedf§!iPand and small at the edges, confirming that the photon
be symmetric with respect to the defect frequengyshifted I|fet|me_depends on the excngtlon frgquency. In the middle of
by —2co cos(#). Solutions of the system (7a)—(7c) consist ot'he miniband photons travel with maximum speed and leave the

harmonic waves travelling along the effective chain like structure quickly, where at the edges of the miniband the group
velocity approaches zero, a fact confirmed experimentally [5].

The transmission relation (11) is symmetric due to relation
(8). By taking into account the next nearest neighbor interaction,

wherea., anda_ are given by the two solutions of the dispercoefficientc,, the asyr_nmetrig terms of the spectral response are
sion relation, which also defines the band structure of the defé@&nerated. By following a similar procedure to that above, an-

by, = by exp(icyn) + b_ exp(ic_n) 9)

lattice: alytical expressions can be obtained, but the final expressions,
which include the solution of a fourth order polynomial to deter-
bw = —2co[cos(r) + 2 cos(a — k/2) cos(rk/2)]. (10) minec in an expression similar to (11), are much to involved to

be reproduced. Fig. 2(b) shows the resultant transmission plot,
The amplitudes of the forward and backward propagatigodeling a 1 in 3 defect lattice. The corresponding values to
wavesb, andb_, respectively, can be determined by substreproduce these figures are in normalized uniis= —0.001,
tuting (9) and (10) into (7a) and (7c). The transmitted field is1 = co/3, v = 0.0004 andw, = 0.3103. Although the defect
then given by spacing is rather large the next nearest neighbor interaction is
present and adds important new features, mainly an asymmetric
br = ¢y [by expliay N) + b_ exp(ia_N)]. response.
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C. Field Propagation into thé K -Direction

Interchangingm for »n in Fig. 1 and making the same ap-
proximations as for th& A/-direction, the respective evolution
equations for field propagation infoK direction are

n=1:
i pr A1m = —Co(G2m + G2m+41 + G3mt1) + Wolim
— 1Y01m + T1Ginm (12a)
n=2:
i o = —Co(@m—t + i + A3m + A3yt + Gamy)
+ woa2m (12b)
2<n< N-1:
d
{2 p7 Arm = —C0(On—2m—1+ Gn—1m—1 + Gn—1m + Gntim
+ Gntimt1 + Gng2mt1) + Wolnm
(12¢)
n=N-—-1:
. d
? i aN—1m = —Co(AN_3m—1 + ON—2m—1 + GN_2m
+ anm + ANm41) + WolN—1m (12d)
n=DN:
d
1 p ANm =—Co(aN—2m—1 + ON—1m—1 + AN—1m)
+ WolNm.- (12e)
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Fig. 3. Transmission of a hexagonal defect lattice alonglthée-direction.
Approximated by a coupled-mode theory (parameters: polarization TE,
1 defect in 3 unit cellsN = 8, ¢ = 0.001,y, = v5 = 0.0008,
V1/2, wo 0.3103). (a) Nearest neighbor interaction
only (1 = 0,72 = yv-1 = 0,72 = ¢-,_, = 0). (b) Nearest and
next nearest neighbor interaction, (= ¢o/3, 72 Yv—1 = 0.0004,

v /2 exp(—im/2)).

T = Gy =

To = Crpy

—1

frequency response of the lattice illuminated from Ih€-di-
rection will be found. Fig. 3 shows two plots of the transmis-
sion in["K -direction, which are obtained by solving the system
of equations (13a)—(13e) and a respective set of equations with

Assuming incidence in the form of (4a) and (4b) reducggsyt nearest neighbor interaction included, the response is asym-

(12a)—(12e) to a set of algebraic equations
n=1:
0 =—(6w +i7)b1 — co{[1 + exp(ir)|bs + exp(ir)bs}
+ 7A_1 bin
n=2:
0 = —bwbhy — co{[1 + exp(—ir)]by + [1 + exp(ir)]bs
+ exp(ir )by}

(13a)

(13b)
2<n<N-1L
0 = —6wb,, — co{exp(—ir)bp—o + [1 + exp(—ir)]|bp_1

+ [1 + exp(ir)]bnt1 + exp(ir)bnya}
(13c)

n=N-—1:
0 =—bwby_1 — co{exp(—ir)bn_3 + [1 + exp(—ir)]|by_2

L4 exp(in)loy} (13d)
n=N:
0 = —(6w +iv)bn — co{exp(—ir)by_2
+ [1 4 exp(—ik)]bn_1}. (13e)

metric. However, the inclusion of next nearest neighbor interac-
tion changes the symmetry, compare Fig. 3(a) and (b). In con-
trast to the" A -direction, for the K'-direction it was also nec-
essary to include the free space radiation with the second line of
defects. This can be understood by looking at Fig. 1. In case of
theI' K -direction the second line of defects is much closer to a
respective interface facet than in case oflthé -direction.

IV. TRANSFERMATRIX METHOD ANALYSIS

A modified version of the transfer matrix method as described
by Pendry, Bell, and Ward [17]-[22] has been utilized to pro-
vide a comparison with the analytical results presented in the
previous sections [23]. The conventional cell of the superlattice,
assumed in Figs. 4-6, was represented using a 2-D orthogonal
Cartesian discretization mesh. A cell is defined as the smallest
building block that self-repeats to generate the crystal.

A. Defects: One in Every ThreBEK andI"M

Fig. 4 shows the miniband TE polarized transmission response
for thel’A/ andI'K propagation directions as an evolution of
the number of conventional superlattice cells. Incidence in either
lattice direction shows a central miniband normalized frequency

Although only nearest neighbor interaction has been includetlf o /¢ = 0.312, afigure in good agreement with the analytical
in (12a)—(12e) the set of equations (13a)—(13e) describing themfsults presentedin Figs. 2 and 3. Compare Fig. 2(b) with Fig. 5to
fective defect chain already includes terms that spread furtheontrast the analytical and TMM methods. The trend toward this
The immediate consequence is the loss of the symmetry as ldealization frequency is even present for propagation through
scribed by (8). Hence, even if next nearest neighbor interactiarsingle cell. Increasing the number of cells does not alter the
can be neglected due to large defect spacing an asymmetrioahlization frequency; see Fig. 4.
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Fig. 4. Periodic Defects: one in every thr&&\/ andT K. The transmission Nomalised Frequency fa/c

response of a TE polarized wave as a function of normalized frequency and

crystal thickness expressed in terms of the number of cells through which t#ig. 6. Evolution for superlattice spacing. The TE polarized wave response
wave has been propagated. Defects have been introduced periodically along#nst normalized frequency as a function of the neighbor to neighbor defect
high symmetry axis of the crystals one in every three lattice spacings.{i8p): superlattice spacing for propagation through two cells of structure. (ap):
response. (bottom)' /i’ response. response. (bottoml’ K response.

1 . . . -
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F'%‘ 5 dCIosertIook at_ 1.'” 3 defects ;n tiens Iatlt'i?. d'ricgo?‘ Ih.e tTEd Fig, 7. Field modulus and dielectric distribution. The field modulus shown for
polarized wave transmission response or a superiatticé ot detects INtroAufltlu, e in two” and “one in three” superlattices introduced into an otherwise

Idn'? ihen Iat?(t:re] tl)yttl_n—fllllng every third lattice site in the high symmetrypen‘ect hexagonal crystal as outlined in the caption of Fig. 2. The dielectric
Irections of the fattice. profile is also shown so that the position of the defects can be easily ascertained.

Normalised Frequency fa/c

B. Superlattice Evolution perlattices is noteworthy. The miniband formed byt “one

The TE transmission response as a function of the superlattwo” defect lattice is considerably larger than that of the “one
tice period, expressed as defect neighbor to neighbor distaringhree,” or to the same defect superlattice for transmission in
is shown in Fig. 6 for transmission through two cells of strudhe " K crystal direction. This means that the defects are cou-
ture. The plots clearly show convergence of the defect transmiding strongly to each other. Increasing the distance between de-
sion resonance frequency as the distance between the deffsissitesto “oneinthree” decreases the coupling and the width of
increases. the miniband is substantially decreased. Thisis a finding verified

The large difference in the width of the miniband fak/ in- by finite difference time domain calculations, shown in Fig. 7,
cidence between the “one in two” and “one in three” defect swhich show the modulus of the electric field for a normalized fre-
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quency offa/c = 0.2921 andfa/c = 0.3126 for the “one in For convenience we have scaled the amplitude that way
two” and “one inthree” superlattices respectively. The differendbat its squared absolute value corresponds to the actual mode
in field localization can be clearly seen between the two casesergy.W, provides the respective reference to the energy of
with stronger coupling in the “one in two” superlattice examplethe field structures used in (Ala) as
Both lattice directions show convergence toward a defect res-
onance frequency ofa/c = 0.312 as the distance between de- 5. o2 L2
fectsisincreased. The quality factor of the defect state is also im- Wo = /d T\ €0ER ‘EO‘ + 1o ‘HO‘
proved by increasing the distance between defects resulting in an
increased reflectivity between defect sites. This means that forr] . . . . _
. C : wheree g (7) is the relative dielectric constant, constituting the
certain applications the quality factQrof the system can be en- : . ; T
. . . .~ PC lattice and the defect that is non dispersive in the frequency
gineered to match either the want@gbrto increase the coupling

efficiency between the PC chip and other emitting componentsdEomam under consideration. We define the unperturbed fields
Funperturbed gng frunperturbed \vhich represent the true defect

mode in the absence of any perturbation as
V. CONCLUSION

In summary, we have presented both theoretical and numer- Eunperturbed (7 ) — o (7) exp(—iwot)
ical descriptions of coupled defects in PBG crystals. Based gAd
a weak interaction approach, explicit expressions have been de- ﬁun})erturbed(f” t) = ﬁo(;) exp(—iwot). (Alb)

rived for the interaction between defects and the influence of
perturbations. The actual configuration of the defects, chain, lat-
tice, etc. enters the equations as a linear coupling between neigh/e compare these to the real field structures at the defect
boring defects. The results have been compared favorably withd evaluate the following expression by applying Maxwell’'s
widely accepted numerical methods, the transfer matrix meth&gluations and inserting (Ala) and (Alb)
and finite difference time domain method to compare the elec-
tromagnetic properties of the'structures. ' div ( [Funperturbed” o ﬁ)

Future devices may benefit greatly from using coupled de-
fects to guide electromagnetic radiation. Bends in coupled-de-
fect chains can be introduced along the crystal’s inherent sym-
metry axis with no insertion loss, i.e., mode mismatch due to

_ —Noﬁ 2 ﬁunperturbed* _ E’unperturbed*
at

bends in straight wave guiding does not occur. Thfactor of . % (EoERE + ﬁ)

the defect state can be tuned to suit the intended application as

can the localization frequency by altering the type of defect in- _ _; Woko ‘ﬁor o S0R ‘ *0‘2 9 a

troduced into the lattice. It is noteworthy that the defects intro- VWo VWo ot

duced into a lattice need not necessarily be a superlattice them- . L9 o

selves, nor involve the complete filling of lattice sites. Chains — pumperturbed gy P. (A2)

of defects in a straight line with a periodic pattern will suffice

to guide a signal through a PC chip. Any perturbation due to the action of neighboring defects is

incorporated into an additional polarization fig{7, ). Next,

APPENDIX we integrate (A2) over the whole space. As nonpropagating
DERIVATION OF COUPLED-MODE EQUATIONS FORDEFECTS ~ modes decay exponentially in space the left-hand side of (A2)
IN A PERFECTPC vanishes to give

This Appendix derives the equations that describe the evolu- 5 2 9
tion of fields attached to defects in a PC. The analysis is genegak: —iw / AT ‘ﬁo‘ a— /d3f505R ‘EO‘ el
and assumes a three-dimensional (3-D) PC, but can easily be ap- ot
pliedto 2-D, or one-dimensional (1-D) crystals. This only affects _\/W_/O/d3;§un1>erturbed* 9 P. (A3)
the dimension of the space where the integrations are performed. ot

It is assumed that both the electric and magnetic field struc-
turesE, andHy, and the eigenfrequenay, of the eigenmode ~ Next, the magnetic energy of the unperturbed defect mode is
of a single defect in an otherwise perfect crystal are known. TH@nsformed, which appears in the first term on the right-hand
influence of other defects is considered as a weak perturbatisitle of (A3)

Therefore, the field structure of the defect does not change and

a

only theﬁrespective amplitudgt) evolves in time. Hence, the o ‘ﬁ ‘2 1 Prlvos B ‘2
electricE(7, t) and magnetidd (7, t) fields attached to the de- / [l ) BT / |ror~o
fect are approximated as 1
a(t) () = e /d?’FE;; rot rot, Eo
E(7 t) = \/WOEO(F) and H(r, t)= \/WOHO(F‘).

L2
(Ala) - / dgfgo‘?R‘EO‘ (A4)
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and find that it is equal to the respective electrical energy. Cospace, small terms in (A8) can be neglected. Particularly, the
sequently (A3) can be transformed into an evolution equationefiergy exchange terms can be simplified as

the amplitude of the defect mode as 5
iy = T / B + 8¢, )ErF;,  fori# .
0

1= a; =Wot —

.i— \/W/()Q/dg—» unperturbed a ﬁ
at

/dgpgogR ‘EZ at " In most cases, the eigenfrequency shift is the same for all
defects and can be addeddg. However, if small dielectric
(A5) losses are present, their influence can be incorporated into the
polarizationﬁ. Following (A8), one obtains a small imaginary
where the polarization appears as the driving term scaled wiibntribution to the eigenfrequency, which introduces a damping.
the mode energy. We have already labeled the amplitude and thReal PC systems are finite; therefore, boundaries play an im-
polarization with an index to demonstrate that similar expresportant role. The fields attached to the defect transform from
sions hold for all other defectis=1,..., V. bound states, which decay exponentially into every space direc-
_ Now we formulate an explicit expression for the polarizatiotion to leaky modes, which have oscillating tails outside the PC
F;(7, t), which acts on defect This includes the influence of and contribute to either the transmitted or reflected field. Con-
all of the inhomogeneities of the PC lattice, the action of whickequently, the eigenfrequency of these leaky defect modes con-
is not incorporated into the field structures defined in (Ala) andins a small imaginary pa#i~;, which accounts for the decay
(Alb). Hence, all the fields of neighboring defects and the ref the mode amplitude due to radiative losses. The same defect
spective changes of the relative dielectric constants contribui@de can be excited by external radiation allowing for an inter-

as action of the coupled-defect system with its environment. We
add these two terms intuitively to the evolution equation (A7)
N [N to describe damping and external excitation of defect modes as
i \/_Z <Z(§&‘k> CLJE + Z&&‘k a; FE _’i-
d
‘J]#Z k#z (AG) . a a; = (WO — Ci; — [,’}/Z)CLZ + %iain Z C“ CLJ (Ag)

Before inserting (A6) into (A5), we deal with the time deriva- ’5‘61
tive in front of the polarization in (A5). Inspecting (A6), we find,yhere the fields
that the time evolution of the polarization is entirely determinegl,

by that of the field amplitudes oscillating at almost the carrigfijeq that the background transmission of the PC structure van-
frequency of the defectsy. As long as the power transfer begheg the amplitude of the transmitted field(7) is formally
tween the defects is slow compared with this fast oscillation t'&%pressed by

time derivative in (A5) can be replaced byiw,. The final ex-

in; 1S the amplitude of the incident field at the
fect positiort, which couples to the defect mode via Pro-

pression now reads as N
a-(7) = er(Pa; (A10)
9 N i=1
i g = — e — A7 ) ) . )
Yot (wo — cig)ai Z:l KA (A7) wherec,, (7) describes the field pattern emerging from a single
Jj;i defect toward free space. In case of a regular defect lattice and
for a plane-wave excitation (10) yields the contributions to the
The coupling coefficients are given by different diffracted orders of the transmitted field.
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